Recently, consumers have faced rising prices for semiconductor-powered devices, with shortages affecting the availability of products that serve their daily needs. With increased demand for semiconductors in key areas like the automotive industry, healthcare, and within AI-enabled products, manufacturers are vying to remain competitive while making next-generation breakthroughs in order to meet current demand.
So, the question is: how can industrial researchers continue to innovate in order to boost semiconductor production? And how can simulations relieve the pressure for the semiconductor industry to meet ever-growing global demands?
A joint report authored by Boston Consulting Group (BCG) and The Semiconductor Industry Association (SIA) is aimed at combating semiconductor shortages by profiling risks in the current international supply chain and highlighting semiconductors as a central component of shared economic stability across the globe. Central to the report’s findings are a series of statistics that characterize the current issues the world faces in securing a future where semiconductor demands are met as they continue to grow over the next decade.
The Global Semiconductor Supply Chain at a Glance
The current cooperative structure of the global supply chain for semiconductors is as unique as it is complex, with a web of destinations across the globe from the earliest stages of research and design to the final point of sale.
Since the 1970s, specialization within these national and regional stages has contributed to the chain’s ability to produce at the speed of demand, while also innovating and improving the capabilities of semiconductors faster than any one country or region could.
Figure 1 below shows the current global semiconductor market share by region as of 2020. South Korea and the United States account for two-thirds of total market production and sales.
In addition to utilizing the specializations offered by each of the six major regions (Europe, Japan, Mainland China, South Korea, Taiwan, and the United States) that contribute to the global supply chain, the roundabout system also makes use of favorable trade conditions among the participating countries to keep production costs and consumer prices affordable. Figure 2 below shows the usage of semiconductors by industry.
Major risks in disruptions to the current supply chain could lead to a sharp rise in the cost of devices to producers and consumers alike. In a hypothetical situation where the global chain is replaced with self-sufficient regions, the report forecasts up to $900 – 1,225B of upfront investment required to maintain current output and meet rising demands, with an overall cost increase of 35% – 65% for consumers if regional and comparative advantages are ignored.
National policies within key regions, most notably Mainland China – which has massive industrial and manufacturing capabilities – have already placed self-sufficiency as a high priority for their future development in semiconductors.
Similar policies in other nations could leave local markets open to unforeseen factors, including greater competition for materials and additional costs in their securing and transportation. Situations like natural disasters and geopolitical conflict could destabilize systems that seek to decouple from the international chain, leading to regional shortages of semiconductors and additional issues with production for critical communications and security sectors.
Researching and Developing Solutions for the Market
In addition to the current issues that the international supply chain faces, SIA’s report highlights the importance of research and development, which is the primary way that producers maintain state-of-the-art techniques and provide security in their devices.
Although the speed of innovation and change in major market devices like consumer electronics is visible from year-to-year, the time for techniques developed at pre-competition research stages to be utilized at a mass scale and included within the global chain can take decades. As a result, original equipment manufacturers (OEMs) and integrated device manufacturers (IDMs) face upfront costs in both R&D and capital expenditure, with years before seeing a return on investment in these areas.
Despite the delayed turnaround for companies investing and participating in pre-competitive and basic research, cooperation at these early stages enables chips to become smaller while increasing performance. Recent innovations like 5G, internet of things (IoT), and autonomous vehicles all began their journey to widespread use at this stage. Figure 3 below illustrates regional spending in R&D among key regions as a percentage of sales.
SIA’s report also cites the need for utilization of emergent technologies in alleviating risks and constraints in the global chain, with modern inventions like augmented and virtual reality (AR/VR) playing a crucial role in enabling operations to continue remotely throughout the pandemic.
Simulation also provides this principle effect of bridging digital and physical worlds by allowing manufacturers to cut material costs and risk of exposure to hazardous materials, all without sacrificing insights that physical experiments and trials offer.
Unique Solutions Require Detailed, High-fidelity Simulations
The use of simulation software and digitally based tools to further minimize risks that current global producers face is both economic and modern, and its viability as an industry-wide solution will only become greater as time continues. Simulations offer additional innovation points through applications for commonly used equipment in the semiconductor industry, such as plasma reactors, with details like simulated angular distribution functions deciding process parameters like excitation frequency and excitation voltage.
Industry leaders like Dr. Peter Ventzek and Dr. Alok Ranjan of Tokyo Electron Ltd. – a global supplier of equipment used to fabricate integrated circuits- have already taken advantage of high-fidelity plasma simulation and processing to develop new techniques with a wide array of applications for the semiconductor industry, using the insights offered by numerical simulations using VizGlow™. Here are a few examples of patented methods and techniques using simulations that are contributing to the semiconductors of today and tomorrow:
· Mode-switching plasma systems and methods that allow manufacturers to reduce minimum-required features and the cost of ICs, while also increasing packing density of components. Manufacturers working at the atomic scale are able to continue scaling semiconductor devices with consideration for constraints like equipment configurability, equipment cost, and wafer throughput.
· Techniques that include formation, patterning, and removal of materials in order to achieve physical and electrical specifications for the current and next generation of semiconductor. Plasma etching and deposition are prone to issues with decoupling source power (SP) and bias power (BP) effects, resulting in reduced control and precision. Decoupling these effects helps reduce cross-talk between a source and bias and in turn enhances control while decreasing complexity.
· Utilizing pulsed electron beams to create new plasma processing methods, which enable reduction of feature size while maintaining structural integrity. As device structures continue to densify and develop vertically, these methods which produce atomic-level precision in plasma processes will be useful for profile control, particularly in controlling deposition and etching processes at timescales associated with growth of a single monolayer of film.
Processes in plasma-assisted etching or deposition rely on the accurate determination of the distribution of the ion energy and angle close to the substrate surface. Precise control over these parameters could be used to manipulate the bombardment of the process surface. However, from a process engineer’s perspective, the incremental changes in geometric design, voltage, power, feed gas composition, and flow rates must be correlated with IEADF (Ion Energy and Angular Distribution functions).
The engineering team at Tokyo Electron Ltd. uses our non-equilibrium plasma solver, VizGlow™, and particle solver, VizGrain™, to understand underlying physics and find the best operating conditions for Tokyo Electron Ltd. products. In a paper published in the Journal of Physics D: Applied Physics, Dr. Rochan Upadhyay, and Dr. Kenta Suzuki, Esgee Technologies along with researchers at The University of Texas at Austin validated the VizGlow™ simulations used to obtain IEADF in a capacitively coupled plasma reactor.
Esgee Technologies uses software products, databases, and consulting projects to solve challenges faced by industrial manufacturers. We are dedicated to the development of plasma and physics simulations for manufacturing applications across a wide range of manufacturing industries, including semiconductors, with a legacy of support for analyzing existing equipment, improving processes, and developing new equipment concepts through the use of our software.
Thanks for reading! If you’re still curious about the topics discussed in this article, check out the following journal papers (and ask us for a free copy!):
Upadhyay R., K. Suzuki, L. L. Raja, P.L.G. Ventzek, and A. Ranjan. (2020). Experimentally Validated Computations of Simultaneous Ion and Fast Neutral Energy and Angular Distributions in a Capacitively Coupled Plasma Reactor. Journal of Physics D: Applied Physics. 53. 10.1088/1361-6463/aba068.
Interested in learning more about plasma flow simulations? Click here to take a look at our previous article. Feel free to follow us on Twitter and LinkedIn for more related news, or reach out to us directly at info@esgeetech.com.