Esgee to Present at the Gaseous Electronic Conference (GEC) 2019: Simulations of sheath-wave interactions controlling low frequency modulation of uniformity in VHF driven plasma sources

Esgee Technologies will present “Simulations of sheath-wave interactions controlling low frequency modulation of uniformity in VHF driven plasma sources” at the GEC 72nd Annual Conference 2019 , Oct 28- Nov 1, at the Texas A&M Hotel and Conference Center in College Station, Texas.

Abstract

Plasma sources capacitively driven at very high frequencies (VHF, e.g. 100MHz) have attracted much interest for semiconductor device fabrication. These sources have the advantage of high efficiency plasma generation since power couples efficiently with electrons and with lower ion energy loss through sheath acceleration. This is beneficial for processes requiring reduced ion energy, high ion and radical flux. At the same time, spatial variations in plasma density and sheath voltage can arise leading to non-uniformities at the wafer. The root cause of VHF plasma non-uniformity is related to both electromagnetic wave and sheath coupling effects. Unfortunately, most previous plasma fluid models that include electromagnetic wave effects have found it challenging to simulate this physics. Predictive models that can capture these effects are important for plasma properties and their uniformity in industrial systems. We have recently developed approaches that have succeeded in reproducing how VHF power influences plasma uniformity by hybridizing electrostatic and electromagnetic power delivery in a plasma fluid model with no loss of self-consistency. These simulations also demonstrate how low frequency added to VHF impacts uniformity through a sheath-wave interaction mechanism.

Esgee to Present at the Gaseous Electronic Conference (GEC) 2019: Computational Modeling of Ion Energy and Angular Distributions in Pulsed Source and Bias Plasmas

Esgee Technologies will present “Computational Modeling of Ion Energy and Angular Distributions in Pulsed Source and Bias Plasmas” at the GEC 72nd Annual Conference 2019 , Oct 28- Nov 1, at the Texas A&M Hotel and Conference Center in College Station, Texas.

Abstract

Accurate predictions of the Ion Energy and Angular Distributions (IEADFs), are essential for a range of critical applications in thin films deposition and etching. Ion generation and flux is determined by ionization rates that depend on reactor-level parameters. Ion energy and angle depends on the acceleration of the ions across the sheath, driven by potential differences governed by the spatial plasma distribution. The IEADF at the wafer surface sensitively depends on rare collisional events such as charge exchange and ion-neutral collisions during the ion’s transit across the sheath. Using ion transport parameters computed using standard fluid modeling techniques can significantly misrepresent the actual IEADFs at surfaces. In this study we use a hybrid approach where we employ VizGlow, a fluid based plasma solver, to simulate a (pulsed) Inductively Coupled Plasma (ICP) source with a (pulsed) RF bias. Then we use VizGrain, a companion particle solver, to compute the IEADFs using the test-particle approach. We study the effect of pressure, pulse width and duty cycle and the staggering of the source and bias pulsing cycles on the IEADFs using Argon plama. We compare the simulation results to measurements of IEADFs on a test plasma platform for validation purposes.